

The Only **PMA Approved** Product for the Treatment of 1st MTP Osteoarthritis

THE DIFFERENCE IS MOVING."

PROVEN.

THE DIFFERENCE IS MOVING.™

THE FIRST & ONLY PMA ALTERNATIVE TO FUSION + IMPROVED RANGE OF MOTION

Level I Clinical Evidence¹ of safety and effectiveness for treatment of 1st MTP Osteoarthritis, in the largest randomized study ever conducted for this condition.

SUBSTANTIAL REDUCTION IN PAIN

A substantial and clinically meaningful reduction in pain using the Visual Analog Scale (VAS) was experienced by subjects in the Cartiva group at every follow-up visit through 2 years. Cartiva subjects demonstrated a 93% reduction from a score of 68 at baseline to 5 at 2 years.

SUBSTANTIAL FUNCTIONAL IMPROVEMENT

Functional activities were evaluated using the validated Foot and Ankle Mobility Measure (FAAM). Substantial improvement was observed for Cartiva subjects throughout the 2-year follow-up period with a 168% improvement observed in the sporting activities scale.

IMPROVED RANGE OF MOTION

There was a substantial and clinically important improvement in active dorsiflexon motion in the Cartiva group, restoring motion to levels which are documented in the literature to be needed for normal walking gait while experiencing substantial reduction in pain.

FASTER THAN FUSION FAST & SIMPLE SURGICAL PROCEDURE

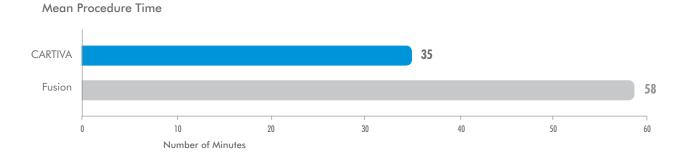

Cartiva surgeries are 40% (23 minutes) faster than fusion surgery.

Illustration of Cartiva SCI implanted into metatarsal head

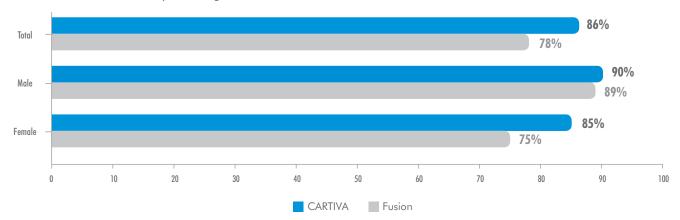
Damaged cartilage replaced with new Cartiva SCI bearing surface

In most operating rooms in the United States, **the value of a minute can be as high as \$100**?

CARTIVA®

PATIENT BENEFITS QUICKER RECOVERY

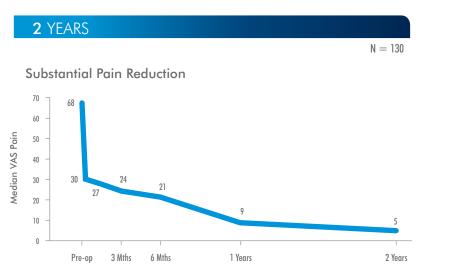
Cartiva patients return to pre-operative activities faster than fusion surgery.


- No cast, full weight bearing immediately as tolerated, able to drive
- Range of Motion exercises encouraged immediately

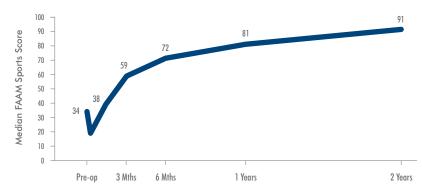
HYDROGEL THAT WORKS LIKE NATURAL CARTILAGE

Mechanical and physical properties similar to native cartilage.

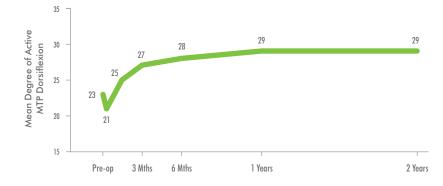
PROPERTY	ARTICULAR CARTILAGE ^{1,3}	CARTIVA SCI
Water Content	60-80%	60%
Compressive Modulus	0.3 – 0.8 MPa	2.5-3.2 MPa
Coefficient of Friction	< 0.01 - 0.05	0.04 - 0.07


FEATURES	BENEFITS	
Synthetic	No risk of viral or bacterial transmission associate with human or animal derived materials	
Biocompatible	Composed of saline and an organic polymer	
Durable	Mechanical and physical properties similar to native cartilage capable of withstanding repetitive loading typical of MTP joint	
Slippery	Low coefficient of friction aids joint articulation and mobility	

Patient Satisfaction % of Patients that **would** have the procedure again.


PROVEN RESULTS **CLINICAL** STUDIES

Patients experience substantial reduction in pain, function improvement, and increased range of motion.



Substantial Functional Improvement

Improved Range of Motion

EXTENSIVELY TESTED

BIOCOMPATIBILITY OF C				
Test	Method/Model	Result		
Cytotoxicity	L929 MEM Elution	Non-cytotoxic		
Cytotoxicity	Direct Contact	Non-cytotoxic		
Sensitization	Kligman Maximization	Non-sensitizer		
rritation/Intracutaneous	IC Injection	Negligible irritant		
Acute Systemic Toxicity	Systemic Injection	Negative		
Subchronic Toxicity	Femoral Condyle Implantation	Non-toxic		
Chronic Toxicity	Femoral Condyle Implantation	Non-toxic		
Genotoxicity	Ames Reverse Mutation	Non-mutagenic		
Genotoxicity	Chromosomal Aberration Assay	Non-clastogenic		
Genotoxicity	Rodent Bone Marrow Micronucleus	· · · · · · · · · · · · · · · · · · ·		
,		Non-clastogenic		
mplantation	Bone Implantation In Femoral Condyle	Negative/no reaction		
^o yrogenicity	Rabbit Pyrogen Test	Non-pyrogenic		
	ARTIVA SCI INSTRUMENTATION			
Cytotoxicity	L929 MEM Elution	Non-cytotoxic		
bensitization	Kligman Maximization	Non-sensitizer		
rritation/Intracutaneous	IC Injection	Negligible irritant		
NIMAL SAFETY STUDIES				
Animal Study Year Goat	Cartiva device implanted in load bearing region of medial femoral condyle in	 No evidence of local or systemic toxicity No inflammatory reaction around implant or osteolytic bone loss Non-significant change to opposing tibial-surface 		
	stifle of 8 mature goats; control defects in 4 goats			
	At one year, knees evaluated via	- No difference in presen	ce of subarticular cysts with	control
	 High field strength MR imaging system for morphology and quantitative T2 and T1-rho parameters; 	- No device fragmentatio	n or dislodgement	
	- Histological processing	- No particulate migratio	n	
	- Biomechanical testing			
Particulate Implant Study	- 5 million cycle wear debris quantified and characterized	- No complications on in		
5 month rabbit	- Particulate replicated and injected via bolus in a quantity 9x	- No test-article related a		
	- Test injections and control (saline) administered to 16 animals.		n clinical observation, gross	pathology, histomorphom
	At 3 and 6 months, histology and pathology per ISO standards	or histopathology of localized tissue - Systemic issues showed no microscopic changes related to the treatment		
			no microscopic changes re gn body giant cells with inj	
		- No wear debits of foreig	gir body gidin cens with in	
FUNCTIONAL TESTING				
Fatigue Testing	Cycles 5 million	- Mechanical durability d	emonstrated after 5M cont	inuous cycles at peak load
5	Test Surface Stainless Steel	 of 4 MPa Significant mass and height recovery upon unloading The Cartiva device demonstrated adequate strength to survive the repetitive, compressive loads that occur clinically in the 1st MTP. 		
	Axial Load 4 MPa			
Near Testing	Cycles 5 million	- Resistance to wear dem	onstrated after 5M continu	ous cycles at simulated pe
fredit lealing	Test Surface Cartilage	load of 4 MPa	onsiraled and own commo	oos cycles ar simolalea pe
	Simulated Axial Load 4 MPa	- 0.18% average mass lo	ss (1.64mg)	
		- Worse case wear debris over 5 years of 2.88 mg or 0.31%		
		- Volumetric wear rate of 1.50mm3/yr that is considerably lower than UHMW		
		(80mm3/year)4		
MATERIALS PROPERTIES				
Inconfined Compression				
Unconfined Compression	loading of unconfined devices to achieve 10% 20% 30% and 40% strain to		CARTIVA	Articular Cartilaa
	Loading of unconfined devices to achieve 10%, 20%, 30% and 40% strain to measure deformation resistance of the matrix and determine compatibility of		CARTIVA	Articular Cartilage
		Compressive Modulus	3.05±0.12 MPa	.31–.80 ⁵ MPa
	measure deformation resistance of the matrix and determine compatibility of	Equilibrium Elastic		
	measure deformation resistance of the matrix and determine compatibility of	Equilibrium Elastic Compressive Modulus	3.05±0.12 MPa 2.68–3.34 MPa	.31–.80 ⁵ MPa 0.54 ⁶ MPa
Confined Compression	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25%	Equilibrium Elastic Compressive Modulus Higher polymer content c	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr	.3180 ⁵ MPa 0.54 ⁶ MPa
Confined Compression	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced	Equilibrium Elastic Compressive Modulus Higher polymer content c in a mean aggregate mo	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa why	.3180 ⁵ MPa 0.54 ⁶ MPa
Confined Compression	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25%	Equilibrium Elastic Compressive Modulus Higher polymer content c	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa why	.3180 ⁵ MPa 0.54 ⁶ MPa
	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced	Equilibrium Elastic Compressive Modulus Higher polymer content c in a mean aggregate mo	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa why	.31–.80 ⁵ MPa 0.54 ⁶ MPa oss links in Cartiva results re cartilage values range
	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of	Equilibrium Elastic Compressive Modulus Higher polymer content c in a mean aggregate mo	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa who a.	.3180 ⁵ MPa 0.54 ⁶ MPa oss links in Cartiva results re cartilage values range Articular Cartilage
	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until	Equilibrium Elastic Compressive Modulus Higher polymer content c in a mean aggregate mo	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa who a.	Articular Cartilage 0.45 ⁷ MPa
	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa who a. CARTIVA	.31–.80 ⁵ MPa 0.54 ⁶ MPa oss links in Cartiva results recartilage values range Articular Cartilage
	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP Shear Moduli Fatigued devices exhibite	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa who a. CARTIVA 0.16–0.36 MPa d no change in shear prop	Articular Cartilage 0.45 ⁷ MPa 0.54 ⁶ MPa 0.45 ⁷ MPa (0.22 - 0.68 MPa) erties and resistance to
	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP Shear Moduli Fatigued devices exhibite mechanically induced de	3.05 ± 0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7 ±1.0 MPa whr a. CARTIVA 0.16–0.36 MPa d no change in shear prop gradation properties. All d	Articular Cartilage 0.45 ⁷ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.45 ⁷ MPa 0.45 ⁷ MPa 0.45 ⁷ MPa 0.22 -0.68 MPa) erties and resistance to evices exhibited full 100%
	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP Shear Moduli Fatigued devices exhibite mechanically induced de	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa who a. CARTIVA 0.16–0.36 MPa d no change in shear prop	Articular Cartilage 0.45 ⁷ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁷ MPa 0.45 ⁷ MPa (0.22 -0.68 MPa) erties and resistance to evices exhibited full 100%
Shear	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of the simple shear properties of the material.	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP Shear Moduli Shear Moduli Fatigued devices exhibite mechanically induced de lateral shear strain withou	3.05 ± 0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7 ±1.0 MPa whr a. CARTIVA 0.16–0.36 MPa d no change in shear prop gradation properties. All d	Articular Cartilage 0.45 ⁷ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.45 ⁷ MPa 0.45 ⁷ MPa 0.45 ⁷ MPa 0.22 -0.68 MPa) erties and resistance to evices exhibited full 100%
Shear	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of the simple shear properties of the material. 4 MPa loading in confined compression fixture to elucidate structural changes	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP Shear Moduli Fatigued devices exhibite mechanically induced de lateral shear strain withou - Biphasic creep	3.05 ± 0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7 ±1.0 MPa whr a. CARTIVA 0.16–0.36 MPa d no change in shear prop gradation properties. All d	Articular Cartilage 0.45 ⁷ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.45 ⁷ MPa 0.45 ⁷ MPa 0.45 ⁷ MPa 0.22 -0.68 MPa) erties and resistance to evices exhibited full 100%
, ihear	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of the simple shear properties of the material.	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP Shear Moduli Shear Moduli Fatigued devices exhibite mechanically induced de lateral shear strain withou	3.05 ± 0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7 ±1.0 MPa whr a. CARTIVA 0.16–0.36 MPa d no change in shear prop gradation properties. All d	Articular Cartilage 0.45 ⁷ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁷ MPa 0.45 ⁷ MPa (0.22 -0.68 MPa) erties and resistance to evices exhibited full 100%
Shear Creep	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of the simple shear properties of the material. 4 MPa loading in confined compression fixture to elucidate structural changes since equilibrium swelling properties are sensitive to the nature and stability of the hydrogel crosslinks	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP Shear Moduli Fatigued devices exhibite mechanically induced de lateral shear strain withou - Biphasic creep - 4-5% mass loss	3.05 ± 0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7 ±1.0 MPa whr a. CARTIVA 0.16–0.36 MPa d no change in shear prop gradation properties. All d	Articular Cartilage 0.45 ⁷ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁷ MPa 0.45 ⁷ MPa (0.22 -0.68 MPa) erties and resistance to evices exhibited full 100%
Shear Creep	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of the simple shear properties of the material. 4 MPa loading in confined compression fixture to elucidate structural changes since equilibrium swelling properties are sensitive to the nature and stability of the hydrogel crosslinks Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP Shear Moduli Fatigued devices exhibite mechanically induced de lateral shear strain without - Biphasic creep - 4-5% mass loss - No catastrophic failure	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa wha a. CARTIVA 0.16–0.36 MPa d no change in shear prop gradation properties. All d ut tearing or showing shear	Articular Cartilage 0.45 ⁷ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa 0.54 ⁷ MPa 0.45 ⁷ MPa (0.22 -0.68 MPa) erties and resistance to evices exhibited full 100%
Shear Creep	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of the simple shear properties of the material. 4 MPa loading in confined compression fixture to elucidate structural changes since equilibrium swelling properties are sensitive to the nature and stability of the hydrogel crosslinks	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP Shear Moduli Fatigued devices exhibite mechanically induced de lateral shear strain withou - Biphasic creep - 4-5% mass loss - No catastrophic failure - Continuous 5M compre	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa wha a. CARTIVA 0.16–0.36 MPa d no change in shear prop gradation properties. All d tt tearing or showing shear	.3180 ⁵ MPa 0.54 ⁶ MPa 0.54 ⁶ MPa Doss links in Cartiva results sere cartilage values range Articular Cartilage 0.45 ⁷ MPa (0.22 -0.68 MPa) erties and resistance to evices exhibited full 100%
Confined Compression Shear Creep	measure deformation resistance of the matrix and determine compatibility of the device with surrounding native tissue Devices confined in compression fixture with 5%, 10%, 15%, 20% and 25% strain applied to assess matrix stiffness at equilibrium (ie when load-induced fluid flow has ceased). Devices seated between test blocks that are moved apart perpendicularly until failure or 5 mm displacement; thereby, providing a baseline understanding of the simple shear properties of the material. 4 MPa loading in confined compression fixture to elucidate structural changes since equilibrium swelling properties are sensitive to the nature and stability of the hydrogel crosslinks Devices loaded in a confined fixture to 8, 12, 18, and 24 MPa out to	Equilibrium Elastic Compressive Modulus Higher polymer content a in a mean aggregate mo between 0.6 and 1.2 MP Shear Moduli Fatigued devices exhibite mechanically induced de lateral shear strain without - Biphasic creep - 4-5% mass loss - No catastrophic failure	3.05±0.12 MPa 2.68–3.34 MPa and presence of physical cr dulus of 6.7±1.0 MPa what a. CARTIVA 0.16–0.36 MPa d no change in shear prop gradation properties. All d ut tearing or showing shear sssion cycles a (6 x peak load)	0.54 ⁶ MPa oss links in Cartiva results pre cartilage values range Articular Cartilage 0.45 ⁷ MPa (0.22 - 0.68 MPa) erties and resistance to evices exhibited full 100%

For Customer Service Call: 877-336-4616

IMPLANTS	
CAR-10-US 10 mm Cartiva MTP Implant	
CAR-8-US 8 mm Cartiva MTP Implant	
DRILL BITS	
MTD-10-US 10 mm Cartiva MTP Counterbore Drill	
MTD-8-US 8 mm Cartiva MTP Counterbore Drill	
GUIDE PINS	
PNN-02-US 2 mm Guide Pin, Non-Threaded (6 per pack)	

INTRODUCERS	
INT-10-US 10 mm Introducer	
INT-8-US 8 mm Introducer	[]
PLACERS	
PLC-10-US 10 mm Placer	
PLC-8-US 8 mm Placer	
DELIVERY TRAY	
	~

TRA-05-US Delivery Tray

The safety and effectiveness of the Cartiva SCI device for treatment in the presence of hallux varus to any degree or hallux valgus >20° is unknown. The safety and effectiveness of using more than one Cartiva SCI device per joint is unknown.

The safety and effectiveness of the Cartiva SCI device at anatomic locations other than the first metatarsophalangeal joint is unknown

The Cartiva SCI device should only be used by experienced surgeons who have undergone training in the use of this device. A lack of adequate experience and/or training may lead to a higher incidence of adverse events.

Examine all instruments prior to surgery for wear or damage. Replace any worn or damaged instruments.

Use aseptic technique when removing the Cartiva SCI device from the innermost packaging.

Carefully inspect the device and its packaging for any signs of damage, including damage to the sterile barrier. Do not use Cartiva SCI devices if the packaging is damaged or the implant shows signs of damage.

Use care when handling the Cartiva device to ensure that it does not come in contact with objects that could damage the implant. Damaged implants are no longer functionally reliable.

The Cartiva SCI device should not be used with components or instruments from other manufacturers

Cartiva SCI device should not be re-used or re-implanted. Ensure proper alignment and placement of device components as misalignment may cause excessive wear and/or early failure of the device.

Brief Summary of Important Product Information INDICATIONS

The Cartiva Synthetic Cartilage Implant is intended for use in the treatment of patients with painful degenerative or post-traumatic arthritis (hallux limitus or hallux rigidus) in the first metatarsophalangeal joint with or without the presence of mild hallux valgus.

CONTRAINDICATIONS

The Cartiva SCI should not be implanted in subjects with the following conditions:

- Active infection of the foot
- Known allergy to polyvinyl alcohol
- Inadequate bone stock due to significant bone loss, avascular necrosis,
- and/or large osteochondral cyst (> 1 cm) of the metatarsophalangeal joint Lesions of the first metatarsal head greater than 10 mm in size
- Diagnosis of gout with tophi Physical conditions that would tend to eliminate adequate implant support (e.g., insufficient quality or quantity of bone resulting from cancer, congenital dislocation, or osteoporosis), systemic and metabolic disorders leading to progressive deterioration of bone (e.g., cortisone therapies or immuno suppressive therapies), and/or tumors of the supporting bone structures

PRECAUTIONS

The safety and effectiveness of this device has not been established in subjects with the following conditions:

- Pediatric patients (< 22 years of age)
- Subjects with osteonecrosis of the first metatarsophalangeal joint Osteoarthritis involving the first metatarsophalangeal joint with
- grade 0 or 1 hallux rigidus per the Coughlin Scale

CITATIONS:

- 1. Data on file at Cartiva.
- 2. Garner, Patrick. Complexities in the Operating Room. 2012
- 3. Baker MI, Walsh SP, Zvi Sc, Boyan BD, A Review of polyvinyl alcohol and its uses in cartilage and orthopedic application, J Biomed Mater Res B Appl. Biomater. 2012 Jul; 100(5): 1451-7
- 4. Jacobs CA, Christensen CP, Greenwald AS, McKellop H, Clinical performance of highly cross-linked polyethylenes in total hip arthroplasty. J Bone Joint Surg Am, 2007;89(12):2779-2786
- 5. Korhonen RK, Laasanen MS, Toyras J, Rieppo J, Hirvonen J, Helminen JF, Jurvelin JS, Comparison of the Equilibrium Response of Articular Cartilage in Unconfined Compression, Confined Compression and Indentation, J Biomech. 2002 Jul;35(7):903-909
- 6. Jurvelin JS, Buschmann MD, Hunziker EB, Optical and Mechanical Determination of Poisson's Ratio, J Biomechanics. 1997;30(3):235-241.
- 7. Athanasiou KA, Liu GT, Lavery LA, Lanctot DR, Schenck RC Jr, Biomechanical Topography of Human Articular Cartilage in the First Metatarsophalangeal Joint, Clin Orthop Relat Res. 1998 Mar;(348):269-281
- 8. Coughlin MJ, Shurnas PS. Hallux rigidus. Grading and long-term results of operative treatment. American Journal of Bone Joint Surgery. 85-A(11):2072-88. November 2003

Cartiva, Inc. 6120 Windward Parkway, Suite 220 Alpharetta, GA 30005

(770)754-3855 info@cartiva.net

© 2016 Cartiva, Inc. All rights reserved.